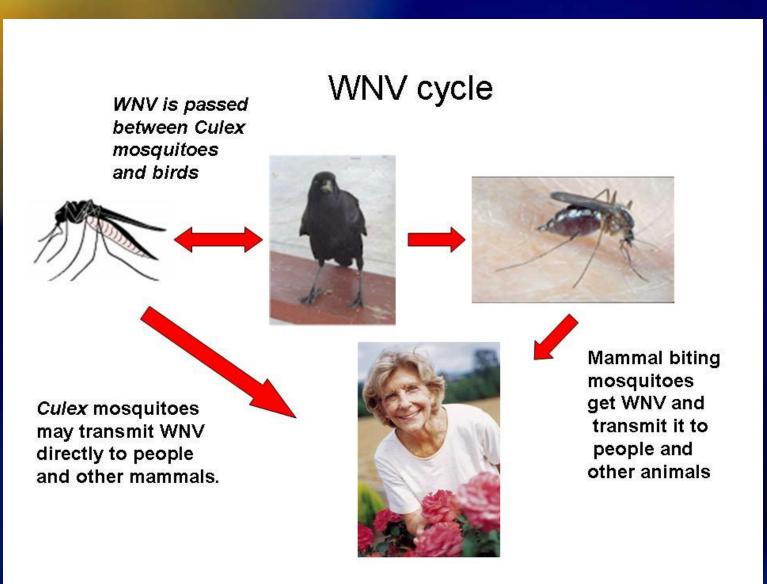
Pesticides Used to Control West Nile Virus: Toxicity to the Estuarine Grass Shrimp, *Palaemonetes pugio*

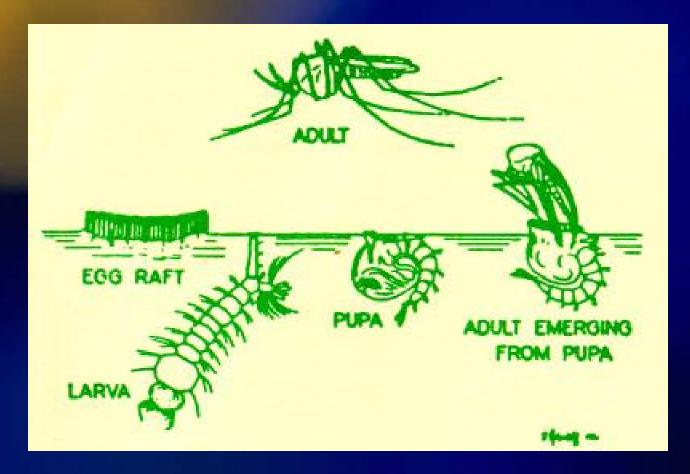
Robin K. Barnes

Outline


Experimental Approach

Field & Laboratory Results

Conclusions



Why is mosquito control important?

http://www.plymouthmosquito.com/wnv.htm

Life Stages of the Mosquito

Need standing water to complete breeding cycle
 Salt marshes provide the perfect habitat

History of mosquito control on Long Island

 Began after the Civil War (post 1865), continued through Great Depression

Returning soldiers brought malaria

Drainage ditches dug—remove standing water

Eliminated malaria; continued ditching to remove nuisance

History of mosquito control on Long Island

Drainage ditches dug—remove standing water

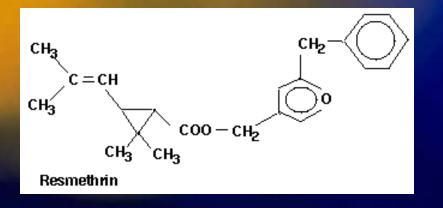
Eliminated malaria; continued ditching to remove nuisance

http://camel2.conncoll.edu/ccrec/greennet/arbo/publications/34/FRAME.HTM

Mosquito Spraying on Long Island

 Spraying has occurred on LI since the 1930s

1999----West Nile Virus first detected in U.S. (spray increases)

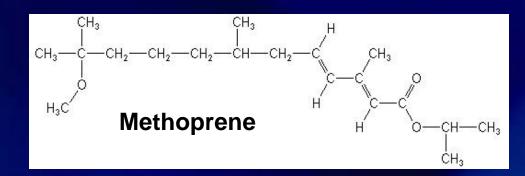


Current practices:

- larvicide with BT or Altosid® (methoprene) often
- adulticide with Scourge® (resmethrin) when needed

http://camel2.conncoll.edu/ccrec/greennet/arbo/publications/34/FRAME.HTM

Pesticides Used on Long Island



Resmethrin:

- Pyrethroid (Scourge®) -acts as a neurotoxicant
- ✤ ¹LC50s (fish species)
- ~ generally < 10 μ g/L
- LC50s (shrimp species)
- ~ typically < $1\mu g/L$

Methoprene:

- Insect growth regulator (Altosid®)
- ²LC50s (fish species) ~ > 100 mg/L
- ^{3, 4}Studies with shrimp variable (LC50s range from 14 μg/L - 1 mg/L)

¹ Bradbury & Coats, 1989 ² http://pesticideinfo.org ³ Wirth et al., 2001 ⁴ Brown et al., 1996

Why study this?

 Spraying is an important component of disease/nuisance control

Both chemicals can be very toxic to organisms at low concentrations

Potential for non-target organisms to be affected

No local EIS performed by vector control...

As part of the long-term assessment proposed by the NYSDEC, Cashin Associates coordinated a caging study that included many parties...

Cashin Associates (coordination)

Suffolk County Department of Health Services Division of Environment Quality (sampling)

Suffolk County Department of Public Works – Vector Control (spraying)

U.S. Geological Survey (*sampling & analysis*)

Brownawell's Laboratory Stony Brook University (sampling & analysis)

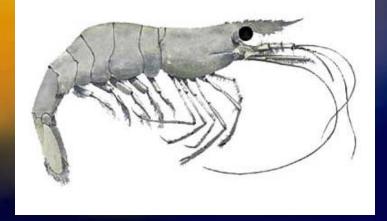
RTP Environmental Corp. (modeling)

Integral Consulting Inc. (risk assessment)

Long Island University (caged fish assessment)

Caging study design—original plan

Original plan


- Multiple study sites
- Multiple reference sites
- Multiple sprays
- Investigate both larvicide and adulticide use
- Limited approval by the NYSDEC
 - No planned sprays allowed, only operational sprays

Caging study design—what happened

Three larvicides

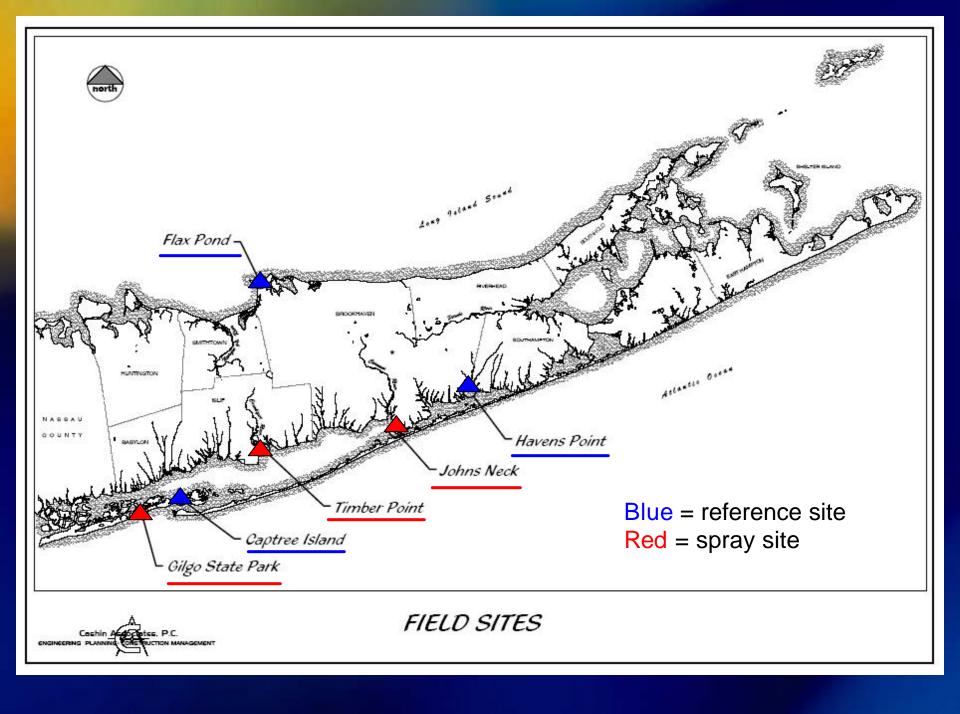
- First two: 8/3 and 8/10
- Both had the same two spray & reference sites
- The third: 9/1—only one spray site
- Two adulticides performed
 - On 8/18 and 8/25
 - Same sites as spray & reference

Why Shrimp??

Palaemonetes pugio

- Crustaceans sensitive to pesticides
- Used as an estuarine health indicator by US EPA
- Important component in food web (prey species)
- Aid in breakdown of detritus

Experimental Approach


Three part approach

-University and the state

Part I: Caging study with shrimp

Flax Pond field site

Black circles indicate final cage positions.

Havens Point field site

Black circles indicate final cage positions.

Johns Neck field site

Black and white circles indicate final and preliminary cage positions, respectively.

Captree Island field site

Black circles indicate final cage positions.

Timber Point field site

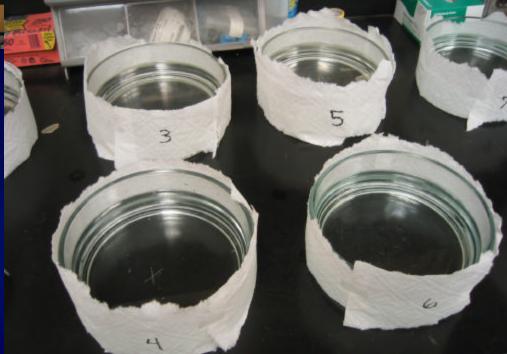
Black and white circles indicate final and preliminary cage positions, respectively.

Details of caging study
 Fish/shrimp placed 24 h pre-spray

Survival checked daily for 4 days

DO & temperature monitored every 30 min for duration of all experiments

Chemistry—for both larvicide & adulticide


- Water samples taken 30 min pre-spray; 1-96 h post-spray
- Sediment samples taken pre-spray; 1 & 4 days post-spray
- Analysis of sediment & water by GC-MS & LC-MS

 Brownawell and Terracciano performed analyses on water and sediment samples

Part II: Laboratory Studies

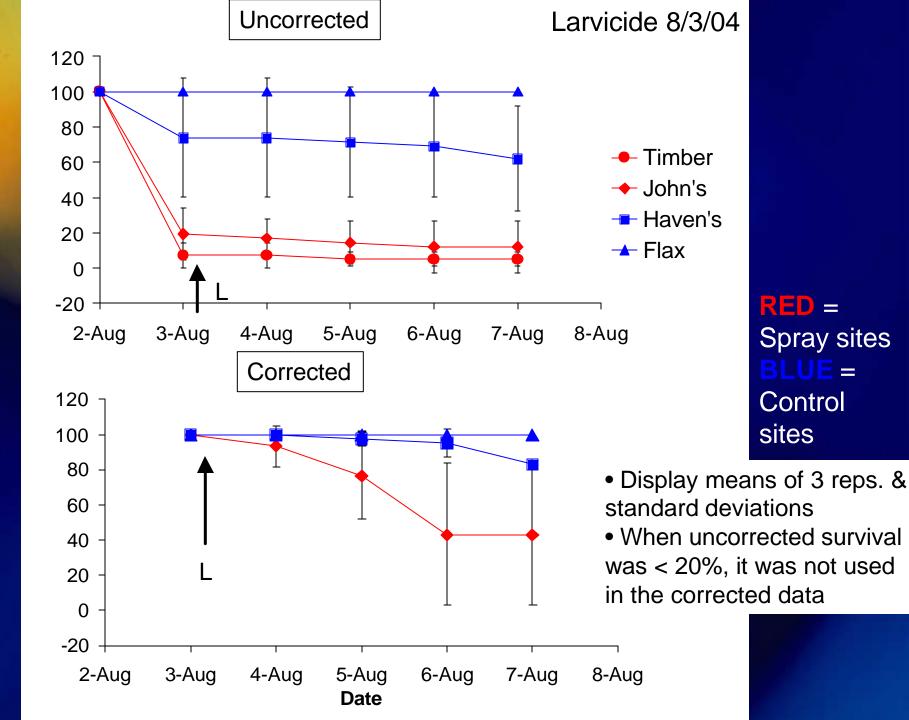
Test Type:	Method Summary:	Why Studied?
Static Tests:	-water taken after spray -replenished daily in lab	-independent measure of toxicity without environmental variables
Prey Capture Tests:	 -1 or 2 h in duration -5 brine shrimp prey -replenished every 15 m 	-assessment of non- lethal effects of pesticide exposure on shrimp
Dosing Experiments:	-3 or 4 replicates -dosed 1 time/day for 4 d -water & acetone controls	-measure acute toxicity of LI pesticides on shrimp

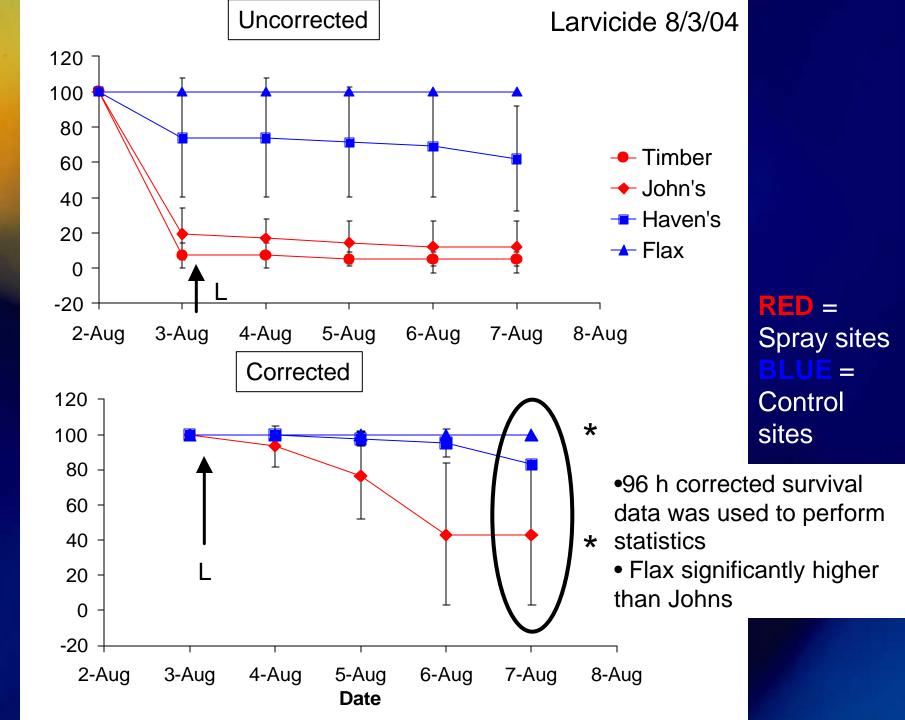
Static & Dosing Experiments...

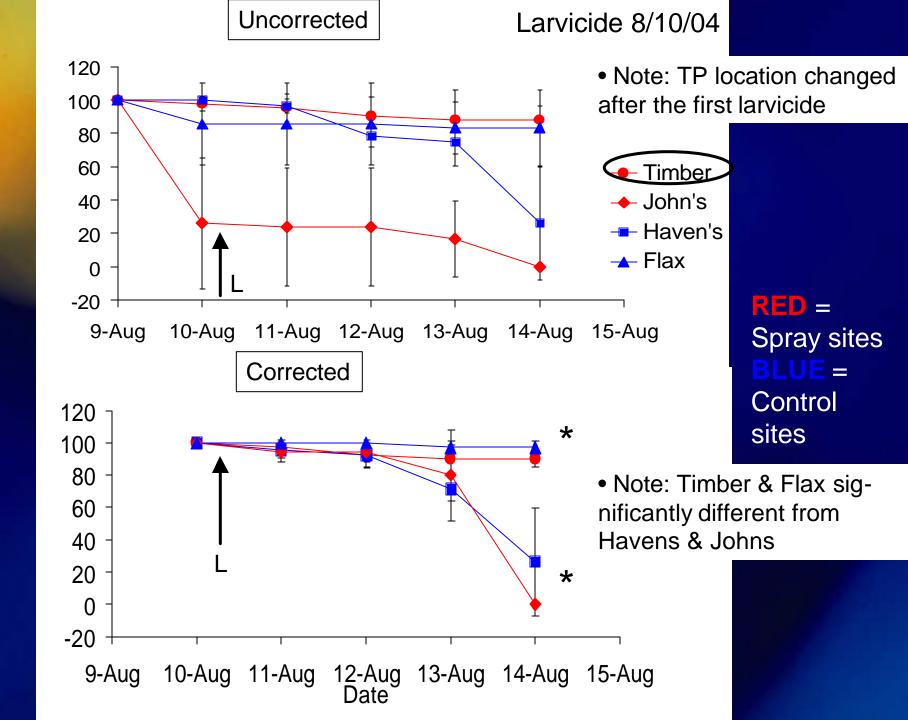
Prey Capture Experiments...

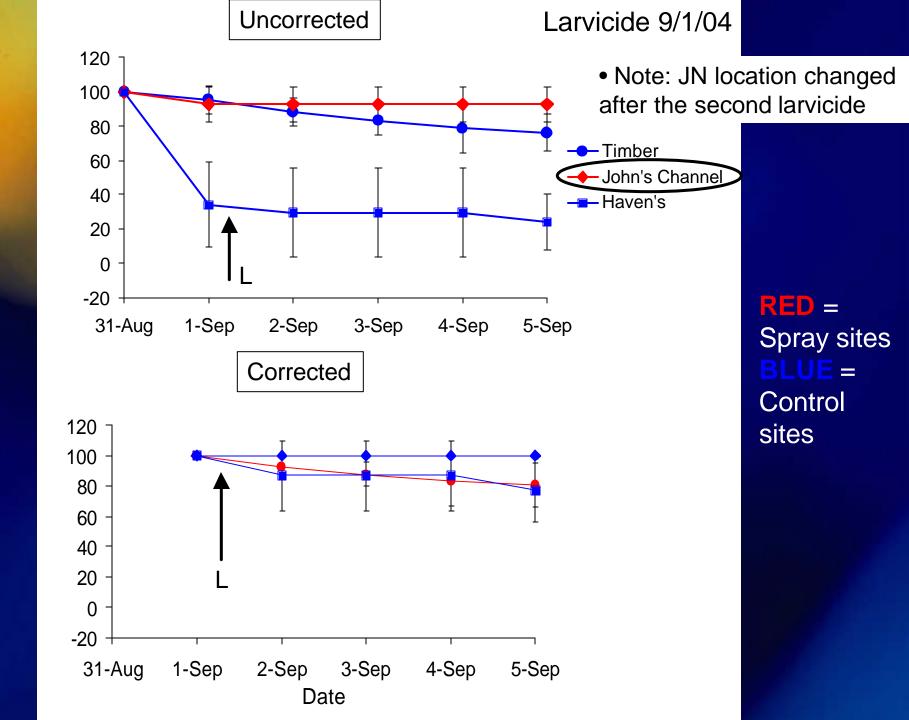
Part III: Benthic community structure analysis

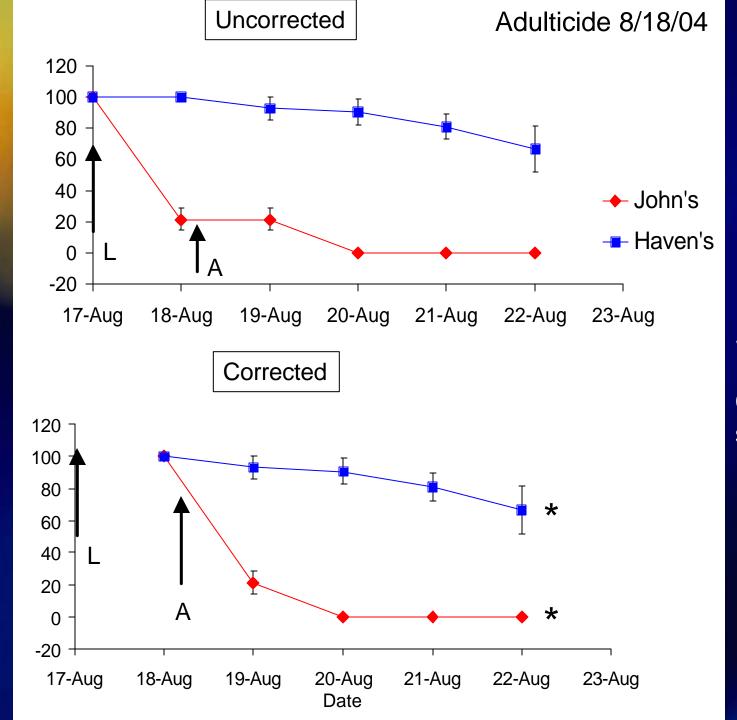
Cores taken from all field sites after spraying done for the year

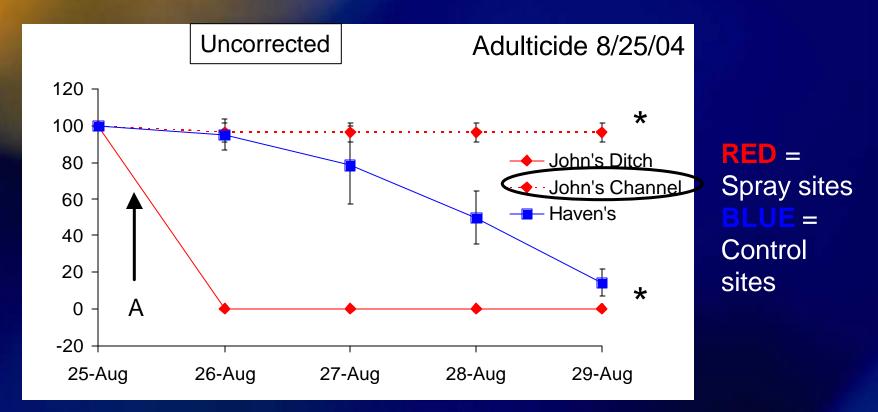

Abundance and identification of species determined

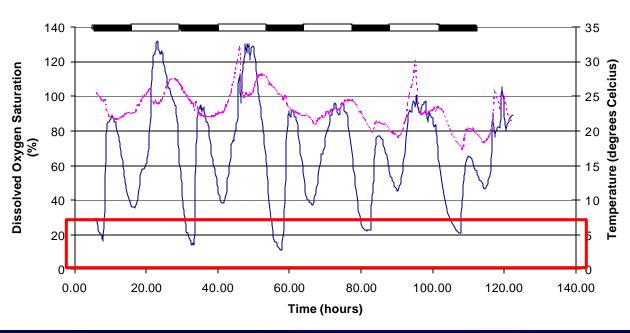

Compared reference sites (no known recent spraying) with sprayed sites


Analysis performed to assess chronic effects associated with pesticides

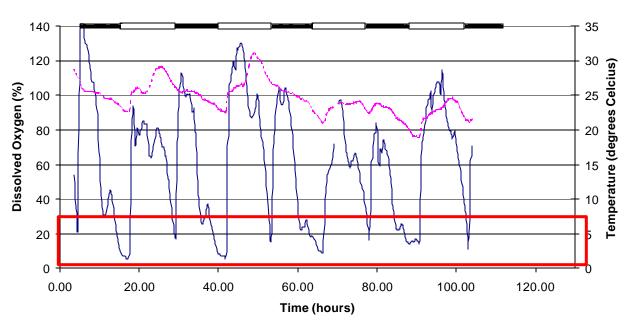



Caging Study Results



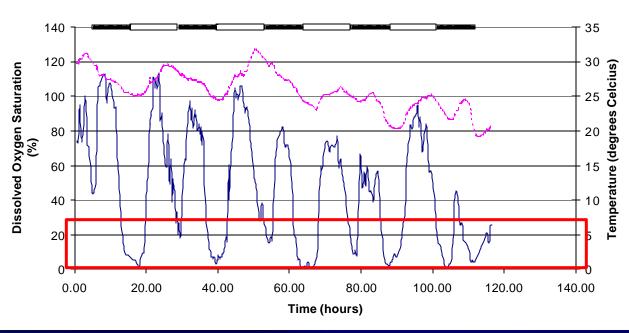

RED = Spray sites BLUE = Control sites

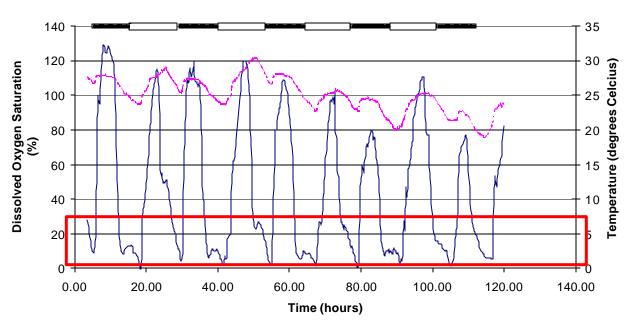
 Note: Johns channel significantly different from Johns ditch & Havens



• Note: JN ditch was the original site; channel was the location change

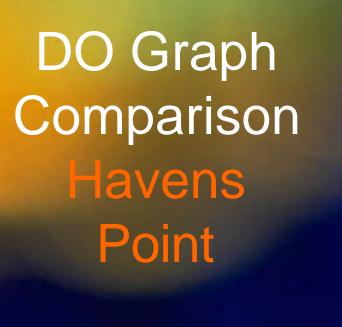
DO Graph Comparison Reference Sites


Larvicide 8/3: Haven's Point DO and Temperature

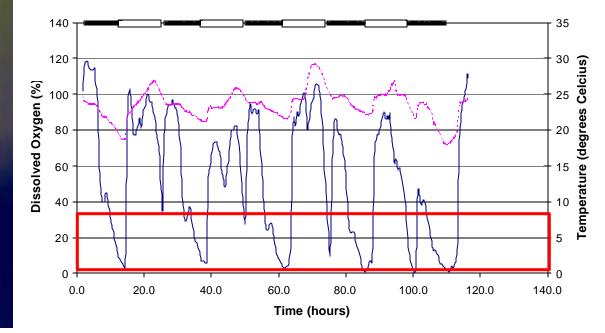

-blue line = DO
-pink line = temperature
-black/white strip = day
& night sequence

Larvicide 8/3: Flax Pond DO Saturation & Temperature

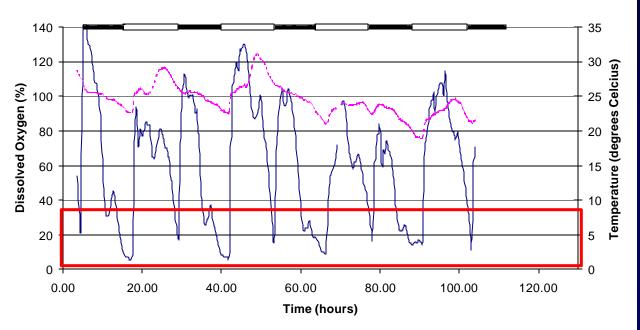
DO Graph Comparison Spray Sites



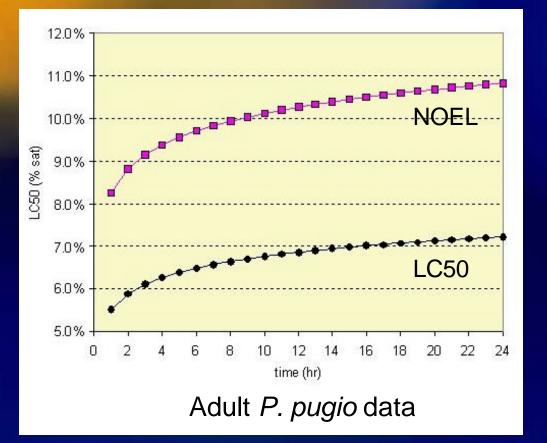
Larvicide 8/3: John's Neck DO and Temperature



-blue line = DO
-pink line = temperature
-black/white strip = day
& night sequence


Larvicide 8/3: Timberpoint DO and Temperature

Adulticide 8/18: Haven's Point DO and Temperature



Larvicide 8/3: Haven's Point DO and Temperature

-blue line = DO
-pink line = temperature
-black/white strip = day
& night sequence

EPA DO Method: Time to death approach using daily cumulative low DO excursions

Two Criteria: ✤ LC50 <5% for > 1 h 5-7 % for > 4 h ✤ NOEL <9 % for >2 h Determined time below thresholds for both criteria

EPA-822-R-00-012 & G. Thursby

Caging Study: Summary of DO

Denotes when low DO could have caused mortality

?

Denotes that the DO is for some reason unknown...

			Spray	Sites:	Control	Sites:
Spray Type:	Dates:	Species		JN	FP	HP
Larvicide	8/3/04	Fish				
		Shrimp	T	T		
	8/10/04	Fish		\bigcirc		
		Shrimp		8		77
	9/1/04	Fish				
		Shrimp				77
Adulticide	8/18/04	Fish		-		
		Shrimp		1		
	8/25/04	Fish				
		Shrimp				
			-			

denotes when cages were moved to deeper water

Caging Study: Summary of Survival

			Spray	Sites:	Control	Sites:
Spray Type:	Dates:	Species	TP	JN	FP	HP
Larvicide	8/3/04	Fish	Keo	N		
		Shrimp				
	8/10/04	Fish	•••	· ·		
		Shrimp				
	9/1/04	Fish				
		Shrimp				~
Adulticide	8/18/04	Fish		_		
		Shrimp		K 🕄		~
	8/25/04	Fish				
		Shrimp				
						• •

Summary of Mortaltiy Observed in Caged Organisms

denotes when cages were moved to deeper water Statistically significant mortality relative to another site at one or more days

Summary of DO & mortality

 Mortality that can be attributed to low DO

Denotes when low DO could have caused mortality

Denotes that the DO is for some reason unknown...

Summary of Mortaltiy Observed in Caged Organisms - Oxygen Effect

			Spray	Sites:	Control	Sites:
Spray Type:	Dates:	Species	TP	JN	FP	HP
Larvicide	8/3/04	Fish				
		Shrimp				
	8/10/04	Fish				
		Shrimp				
	9/1/04	Fish				
		Shrimp				7
Adulticide	8/18/04	Fish				
		Shrimp				
	8/25/04	Fish				
		Shrimp				

denotes when cages were moved to deeper water Statistically significant mortality relative to another site at one or more days

Conclusions from caging study survival & DO

The field caging study did not indicate toxicity due to pesticide spraying

All of mortality could have been caused by low DO alone using an EPA time-to-death approach

Laboratory Study Results

Static Testing Results (with water collected 30-min post-spray and taken back to the lab)

Shrimp Static Exposure Experiments Concurrent with Spray Events

Start Date:	Site:	Site: Mean % Survival: (after 96 hours)	
8/3/2004	Flax Pond	100.0	0.0
	Timber Point	100.0	0.0
	Johns Neck	83.3	40.8
8/10/2004	Flax Pond	100.0	0.0
	Timber Point	100.0	0.0
	Johns Neck	100.0	0.0
8/18/2004	Johns Neck	100.0	0.0
	Havens Point	100.0	0.0
8/25/2004	Johns Neck	100.0	0.0
	Havens Point	100.0	0.0
9/1/2004	Timber Point	83.3	40.8
	Havens Point	66.7	51.6

Conclusions from static tests

Concentrations of chemicals applied during sprays was not directly toxic to grass shrimp under controlled conditions in the laboratory

Prey Capture Results

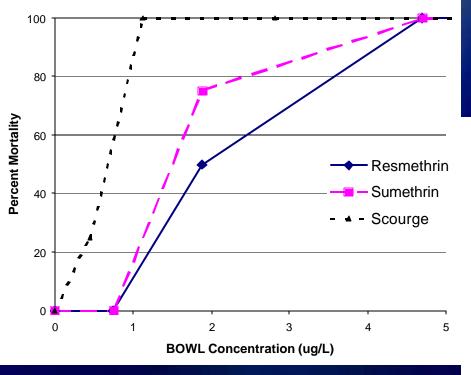
Caged & Static Tested Shrimp Only!

		Number of	Avg. eaten	Std. Dev.:
Date:	Site ID:	Shrimp Tested:	after 60 min.:	
8/3/04 Larvicide	Flax	7	9.14	7.01
	Havens	7	10.29	5.44
	Johns Neck	18.60	1.67	
	Timber	2	9.00	9.90
	Flax static	5	8.40	5.98
	J.N. static	5	10.00	4.64
	T.P. static	5	8.60	2.19
8/9/04 Larvicide	Flax	10	12.10	4.72
	Havens	10	12.90	5.07
	J.N. static	6	12.50	6.69
	Timber	10	10.20	5.03
8/18/04 Adulticide	Havens	10	11.80	4.85
	J.N. static	5	10.20	3.27
	H.P. static	5	9.40	4.72
8/25/04 Adulticide	Havens	6	12.67	2.73
	H.P. static	5	11.00	1.22
	J.N. channel	14	11.00	3.26
	J.N. static	5	9.00	1.41
9/1/04 Larvicide	Havens	9	12.78	2.95
	Johns Neck	10	5.80	3.55
	Timber	11	9.82	4.60

Conclusions from prey capture tests

Concentrations of chemicals applied during sprays did not affect the prey capture ability of grass shrimp under controlled conditions in the laboratory

Chemicals involved in dosing experiments

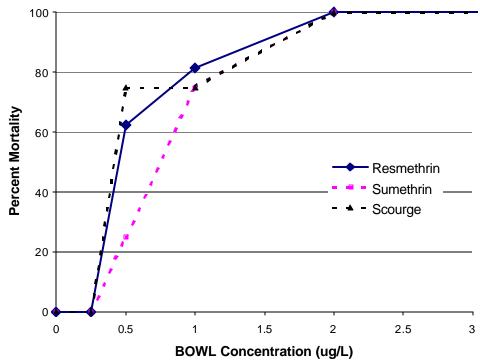

Pyrethroids

- Resmethrin (active ingredient in Scourge®)
- Sumethrin (active ingredient in Anvil®)
- Scourge
 ® (received from county—has piperonyl butoxide, PBO, as synergist)

Methoprene-based

- R,S mixture of methoprene
- S-methoprene (active isomer used in Altosid®)
- Altosid® (received from county)

96 h Mortality Curves for 12/19/04


Average LC50s:

Scourge® ~ 0.58 μg/L Sumethrin: ~ 1.1 μg/L Resmethrin ~ 1.2 μg/L

TOXICITY: Scourge® > Sumethrin ~ Resmethrin

Dosing Experiment Results

NOTE: no methoprene-based chemical was toxic up to 1 mg/L concentrations

Conclusions from dosing experiments

Resmethrin & sumethrin are toxic around 1.1 ug/L, and Scourge® appears to be more toxic, which is to be expected. Scourge® is toxic at 0.58 ug/L.

Altosid® or methorprene-based chemical concentrations of 1 mg/L were not observed to be toxic to shrimp in the laboratory

Altosid® and Scourge® Chemistry Findings (Analyses performed by Dr. Bruce Brownawell, Joe Ruggieri & Steve Terracciano)

Methoprene

Resmethrin

- Not detected in pre-spray or reference samples
- Exceeding 1,000 ng/L were observed 30 min post- spray after 3 of 4 sprays
- 2 hrs post-spray, < 25 ng/L-detectable for 1 to 2 days postspray
- More persistent in sediment, but no evidence of build-up

- Not found in pre-spray of water or sediment
- Much higher at water interface (320 ng/L) than inches below surface (60 ng/L), but often non-detectable
- Rapidly became undetectable
 2 hrs after spray
- Not found in sediments after spraying

Mortality hazard assessment

Low concentrations of pesticides observed in field samples after spraying are much lower levels needed to cause mortality in the laboratory, further supporting the absence of toxicity in the field

Benthic Community Analysis Results

Crustaceans

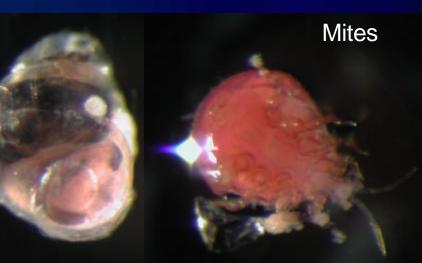
Amphipod

Our original hypothesis was that the crustacean community would be most affected by sprays due to phylogenic similarities...

Cumacean

General crustaceans

Polychaetes...



Mollusks & others...

Snout beetle

Snails

Midge larvae

Clams

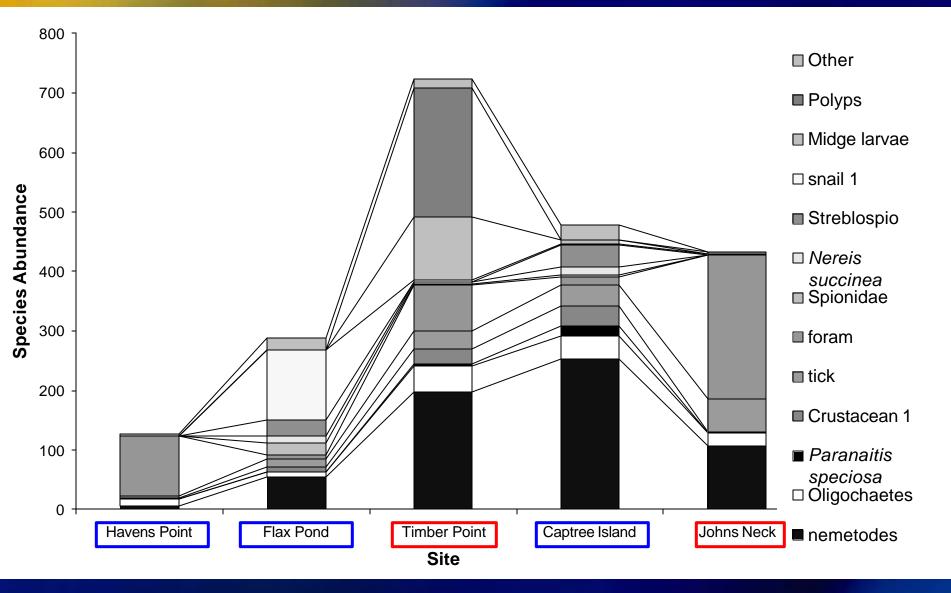
Numbe	r
-------	---

Organism ID

1	oligochaete
2	Paranaitis speciosa
3	Spionidae
4	Nereis succinea
5	Streblospio
6	trumpet-butt worm
7	Cirratulidae
8	fan worm
9	Amphareidae
10	crustacean #1
11	tick
12	cladocerans
13	midge larvae
14	isopod
15	amphipod
16	snout beetle
17	Trombidiid mite
18	crustacean #2
19	Corophium crust.
20	Cumacean
21	Polyps
22	snail #1
23	snail #2
24	clams
25	worms
26	foram

Phylum

Annelida Annelida Annelida Annelida Annelida Annelida Annelida Annelida Annelida Arthropoda Cnidaria Mollusca Mollusca Mollusca Nematoda Sarcodina


Worms

26 Species identified in samples

Insects/Crustaceans

Anemones Mollusks Nemetodes Foraminifera

Species abundance of 99% of species

Note: "Other" represents the remaining 1% of species

Benthic community statistical analysis

- PERMANOVA v. 1.6 was used to analyze site differences with respect to species abundance and type
- Program runs ANOVAs on multivariate data
 - Data was run using a two-way nested ANOVA
- Data was analyzed in four ways
 - all species; marine animals only; crustaceans only; all Arthropods
- No significant differences between spray and reference sites during any of the four runs

Conclusions from benthic community analysis

Spray sites were not significantly different from reference sites in species abundance and composition

Sites were significantly different from each other regardless of spray status

Benthic organism composition more dependent on location rather than spray status

Conclusions

Altosid® and Scourge® had no demonstrable effect on caged animals, which was supported in the laboratory studies and chemical analyses

Low DO primary source of mortality in caged organisms (i.e. changes in cage location significantly increased survival)

Pesticide exposure was not an important factor affecting benthic community structure

Significance

The spraying of pesticides in Suffolk County for mosquito control does not seem to cause adverse effects in a non-target organism, *P. pugio*, or benthic community structure (when measured in the fall for this study)

Bottom line: we failed to see pesticiderelated toxicity with studied parameters

WNV is now a national problem--the results of this study are pertinent for US mosquito control

Acknowledgements

- Dr. Anne McElroy for everything!
- Committee members: Bruce Brownawell & Robert Cerrato
- Cashin Associates (for funding)
- Drs. Robert Turner & Chris Gobler
- Southampton kids Brian & Matt
- Chris Knakal & Steve Abrams
- Lourdes, Ann and Alex
- U.S. Geological Survey—Steve T., Shawn & the gang
- Suffolk County Department of Health Services --Division of Environment Quality
- Suffolk County Department of Public Works Vector Control

Questions?

8/3/04--Timber Point

Time post spray (h)	Sample type	Methoprene ng/L	Lab
0.5	Interface	3,300 216	USB USGS
	Subsurface	490 82	USGS USB USGS
2	Subsurface	6.3 < 5	USB USGS
24	Subsurface	17 < 5	USB USGS
48	Subsurface	< 5	USGS
96	Subsurface	< 5	USGS

Methoprene water column concentrations

8/3/04--Johns Neck

Time post spray (h)	Sample type	Methoprene ng/L	Lab
()		8'-	2000
0.5	Interface	23	USB
		< 5	USGS
	Subsurface	> 2,500	USB
		10	USGS
2	Subsurface	< 5	USGS
24	0.1 0	.0.5	UGD
24	Subsurface	< 0.5	USB
		< 5	USGS
48	Subsurface	< 5	USGS
40	Subsurface	< 5	0202
96	Subsurface	< 5	USGS
70	Subsurfuce		0000

Methoprene continued

8/10/2004

1	Time post spra	ay N	Iethopren	e
Site	(h)	Sample type	ng/L	Lab
Johns Neck	0.5	Subsurface	1,100	USB
	24	Subsurface	24	USB
Timber Point	0.5	Subsurface	8	USB
	24	Subsurface	22	USB

8/18/2004

Time post spray (h)	Sample type	Resmethrin ng/L	PBO ng/L	Lab	S	cour	ge® w	ater	
0.5	Interface Subsurface	320 270 7.8 < 5	18,000 59,000 210 1,310	USB USGS USB USGS	column concentrations at Johns Neck				
2	Subsurface	36 38	2,900 457	USB USGS					
9	Subsurface	< 0.5 < 5	24 61	USB USGS					
48	Subsurface	< 5	6	USGS			8/25/2004		
96	Subsurface	< 5	< 5	USGS	Time post spray (h)	Sample type	Resmethrin ng/L	PBO ng/L	Lab
					0.5	Interface	< 0.5 < 5	26 12	USB USGS
						Subsurface	0.8 < 5	11 15	USB USGS
					2	Subsurface	< 0.5 < 5	2 28	USB USGS
					9	Subsurface	< 0.5 < 5	88 113	USB USGS
					48	Subsurface	< 5	< 5	USGS
					96	Subsurface	< 5	< 5	USGS